ENVIRONMENTAL PRODUCT DECLARATION

In accordance with EN 15804 and ISO 14025

CLIMALIT[®] 4-16-4 / 4-16-44.1 /4-16-33.1

Double glazing

Date of issue : 07-10-2016 Version : V.01

THE R. P. LEWIS

VERIFICATION

S-P-00934

Table of content

Table of content1
General information2
Product description
Product description and description of use
Declaration of the main product components and/or materials5
LCA calculation information
Life cycle stages
Product stage, A1-A37
LCA results
CLIMALIT 4-16-4
CLIMALIT 4-16-44.1
CLIMALIT 4-16-33.1
LCA results interpretation
Health characteristics
Additional Environmental Information22
Saint-Gobain's environmental policy22
Our products' contribution to Sustainable Buildings23

General information

Manufacturer:

SAINT-GOBAIN GLASS FRANCE¹ 18 avenue d'Alsace 92400 Courbevoie FRANCE

European standard EN 1	5804 served as core EPD
Product / product family name and manufacturer represented	CLIMALIT produced by SAINT-GOBAIN GLASSOLUTIONS, with GLASS INDUSTRY flat glass
Declaration issued:	15-11-2016
valid until:	15-11-2021
Program used	INTERNATIONAL EPD SYSTEM
EPD registration number/declaration number:	S-P-00934
PCR identification	EN 15804 as the core PCR and PCR for construction products and construction services issue by the International EPD System (PCR 2012:01 Construction products and construction services, version 2.01 / 2016-03-09)
PCR review was conducted by	The technical committee of the international EPD system Chair: Massimo Marino Contact via info@environdec.com
CPC Classification:	37116 "Glass mirrors; multiple walled insulating units of glass"
Independent verification of the declaration and data, according to ISO 14025	An independent verification of the declaration and data was made, according to ISO 14025:2010. This verification was based on the PCR mentioned above. EPD process certification (internal)
Third party verifier	Bureau Veritas Certification Sverige AB for the EPD process certification
Accredited or approved by	INTERNATIONAL EPD SYSTEM Swedac Ackreditering

¹ The manufacturing companies concerned are SAINT-GOBAIN GLASS FRANCE, SAINT-GOBAIN GLASS DEUTSCHLAND, SAINT -GOBAIN GLASS UK, SAINT-GOBAIN GLASS ITALY, SAINT-GOBAIN CRISTALLERIA, SAINT-GOBAIN GLASS POLSKA, and all Glassolutions sites within the EU. SAINT-GOBAIN - EPD verified - CLIMALIT[®]- Page 2

Product description

Product description and description of use

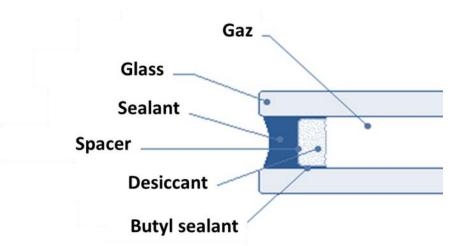
CLIMALIT is a double glazing unit without any low-e coating on the glass. It is meant for building applications (facades, windows ...). It complies with European standard EN 1279.

In this Environmental Product Declaration, one square m² of 3 different glazing configurations will be analyzed:

- 1. CLIMALIT 4-16-4 mm 2. CLIMALIT 4-16-44.1 mm 3. CLIMALIT 4-16-33.1 mm

	N°	N° 1	N° 2	N° 3
	Name	CLIMALIT 4-16-4	CLIMALIT 4-16-44.1	CLIMALIT 4-16-33.1
PANE ONE	Flat glass	SGG PLANICLEAR 4 mm	SGG PLANICLEAR 4 mm	SGG PLANICLEAR 4 mm
	PVB Flat glass			
	Spacer	Aluminium, or Warmedge 16 mm	Aluminium, or Warmedge 16 mm	Aluminium, or Warmedge 16 mm
CAVITY	CAVITY Gaz	Air or Argon or Krypton	Air or Argon or Krypton	Air or Argon or Krypton
CAVITY Gaz Ai Sealant Proof	Butyl, Polyurethane or polysulfide or silicone	Butyl, Polyurethane or polysulfide or silicone	Butyl, Polyurethane or polysulfide or silicone	
	Flat glass	SGG PLANICLEAR 4 mm	SGG PLANICLEAR 4 mm	SGG PLANICLEAR 3 mm
PANE TWO	PVB		1 PVB sheet (Standard, Acoustic) 0.38 mm	1 PVB sheet (Standard, Acoustic) 0.38 mm
	Flat glass		SGG PLANICLEAR 4 mm	SGG PLANICLEAR 3 mm

Performance data


The range of CLIMALIT is quite large, depending on the gaz inside the cavity and the type of PVB, if any. Here is one example of configuration for each of the product described in this EPD.

Detailed performance for any configuration can be found on Calumen Live: <u>http://calumenlive.com/</u>

	N° 1	N° 2	N° 3
	CLIMALIT 4-16-4	CLIMALIT 4-16-44.1	CLIMALIT 4-16-33.1
Details for this specific calculation - Gaz of the cavity - PVB (if any)	- Argon 90%	- Argon 90% - PVB Silence	- Argon 90% - PVB Silence
Mechanical properties			
Nominal thickness (mm)	24	30	26
Weight (kg/m ²)	20	35.4	25.4
Visible parameters			
Light transmittance (LT) %	83%	80%	82%
External light reflection (RLE) (%)	15%	15%	15%
Thermal properties	•	• •	
Energy transmittance (ET) %	77%	66%	70%
Energy absorbance (EA) %	5%	8%	5%
Solar factor g	80%	76%	78%
Safety properties			
Class EN 12600 (protection against people/objects falling)	NPD	NPD/2B2	NPD/2B2
Class EN 356 (protection against vandalism and burglary)	NPD	NPD	NPD
Acoustics properties			
Rw(C;Ctr) (real test)	30(-1;-3)	40(-2;-6)	36(-2;-6)

The performance data are given according to the EN 410-2011 standard for thermal and visible parameters and following the EN 12758 for the acoustic data.

Declaration of the main product components and/or materials

Components	Weight (in %)	Comments
Glass	97 %	CAS number 65997-17-3, EINECS number 266-046-0
Butyl sealant	0,1 %	Polymer
Sealant (polyurethane or polysulfide or silicone)	1 %	Polymer
Spacer bar (aluminium or plastic composite, called warm-edge)	1 %	Article
Desiccant	1 %	CAS number 1318-02-1
Gaz	0,1 %	Dehydrated air, argon, krypton or xenon
PVB interlayer (if one 0.38)	0,2 %	CAS number 63148-65-2 EINECS number 272-808-3

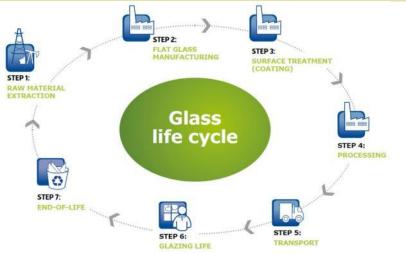
The above list gives the main components of the product, including the one contributing to more than 5% of any environmental impacts, if any.

For any glazing without laminated glass

At the date of issue of this declaration, there is no "Substance of Very High Concern" (SVHC) in concentration above 0.1% by weight, and neither do their packaging, following the European REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals).

For any glazing with laminated glass (PVB interlayer)

At the date of issue of this declaration, the polyvinyl butyral ("PVB") interlayer sheet contains more than 0.1% by weight of 2-(2H-benzotriazol-2yl)-4,6-ditertpentylphenol (UV-328). We are working on the substitution of this substance.

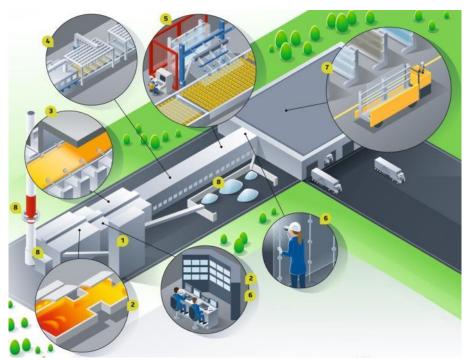

LCA calculation information

FUNCTIONAL UNIT / DECLARED UNIT	1m ² of CLIMALIT to be incorporated into a building. The impacts of installation are not taken into account.
SYSTEM BOUNDARIES	Cradle to gate: Mandatory Stages = A1-A3
REFERENCE SERVICE LIFE (RSL)	n/a. Boundaries are cradle to gate
CUT-OFF RULES	All significant parameters shall be included. According to EN 15804, mass flows under 1% of the total mass input; and/or energy flows representing less than 1% of the total primary energy usage of the associated unit process may be omitted. However, the total amount of energy and mass omitted must not exceed 5% per module. Substances of Very High Concern (SVHC), as defined in the REACH Regulation (article 57), in a concentration above 0.1% by weight, in glass final products, shall be included in the Life Cycle Inventory and the cut-off rules shall not apply.
ALLOCATIONS	Allocations are done on mass basis (kg)
GEOGRAPHICAL COVERAGE AND TIME PERIOD	The informations were established over the year 2014. The information collected comes from the European sites producing float glass and magnetron coated glass (SAINT-GOBAIN GLASS INDUSTRY) and the processor sites from SAINT-GOBAIN GLASSOLUTIONS.
BACKGROUND DATA SOURCE	GaBi data were used to evaluate the environmental impacts.
SOFTWARE	Gabi 6 - GaBi envision SGG_EPD tool for Building glass 1m2_2016-08- 09.gmbx

According to EN 15804, EPD of construction products may not be comparable if they do not comply with this standard. According to ISO 21930, EPD might not be comparable if they are from different programmes.

Life cycle stages

Diagram of the Life Cycle



Not relevant stages: as this is a cradle to gate with options declaration stages A4, A5 and B1-B7 are not relevant.

Product stage, A1-A3

Description of the stage: For double glazed units, A1 to A3 represents the production of glass in the float, the transportation to the processing site, and the processing in double glazed unit.

The product stage includes the extraction and processing of raw materials and energies, transport to the manufacturer, manufacturing and processing of flat glass.

- 1. BATCH MIXER: Mix of raw materials (silica, soda ash, lime, feldspar and dolomite) to which is added recycled glass (cullet) and other compounds depending on the desired color and properties.
- 2. FUSION FURNACE: Raw materials are melted at 1,550°C in a furnace.
- 3. FLOAT: The molten glass is fed into a bath of molten tin. The glass floats on this flat surface and is drawn off in a ribbon. Serrated wheels, or top rolls, pull and push the glass sideways depending on the desired thickness (from 2 to 19 millimeters).
- 4. ANNEALING LEHR: The glass is lifted onto conveyor rollers and passes through a controlled cooling tunnel measuring more than 100 meters in length. Approximately 600°C at the start of this step, the glass exits the lehr at room temperature.
- 5. CUTTING AND STACKING: The glass is automatically cut lengthwise and crosswise. The sheets of glass are raised by vacuum frames that then place them on glass stillages.
- 6. QUALITY: Automatic inspections and regular samples are taken to check the quality of the glass at each step in the glassmaking process.
- 7. STORAGE AND TRANSPORTATION: The stillages are placed on storage racks in the warehouse.
- 8. ENVIRONMENT: Use of recycled cullet, installation of pollution abatement systems and closed circuit management of water: every measure is taken to limit the consumption of energy, extraction of natural resources, production of waste and emissions into the atmosphere.

DOUBLE-GLAZING PRODUCTION

Once the glass has been cut and edgeworked, the sheets are first washed and dried to remove all dirty particles. Two sheets are separated by an aluminum spacerbar or thermally insulating material. They are then sealed around the perimeter using organic seals, and the spacer bar is filled with desiccant to dry the air in the cavity. A secondary seal is then applied to hermetically seal the double-glazed unit.

LCA results

The table below present the environmental impacts associated with the production of 1 square meter of CLIMALIT. This is a Cradle-to-Gate EPD. The environmental impacts of all the other stages in the life cycle of CLIMALIT are not declared (MND).

CLIMALIT 4-16-4

				EN\	/IRONME	NTAL IMI	PACTS 4-	16-4							
	Product stage		ruction s stage				Use stage					End-of-l	ife stage		ery.
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Constant Con	29.8	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
(GWP) - kg CO₂ equiv/FU	The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas. carbon dioxide. which is assigned a value of 1.														
	2.74E-9	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Ozone Depletion (ODP) kg CFC 11 equiv/FU	Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbonsor halons). Which break down when they reach the stratosphere and then catalytically destroy ozone molecules.														
Acidification potential (AP)	0.135	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
kg SO₂ equiv/FU	Acid depositions have negative impacts on natural ecosystems and the man-made environment incl. buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production. heating and transport.														
Eutrophication potential (EP) $kg (PO_4)^{3-} equiv/FU$	0.038	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
			Exc	cessive enric	hment of wa	aters and co	ntinental surf	faces with n	utrients. and	I the associa	ted adverse	biological e	ffects.		
Photochemical ozone creation (POPC)	0.00919	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
kg Ethene equiv/FU			The reaction	n of nitrogen			actions broug ns in the pres	<i>.</i> .	0	0,		a photoche	mical reaction	on.	
Abiotic depletion potential for non-fossil ressources (ADP- elements) - <i>kg Sb equiv/FU</i>	0.000196	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion potential for fossil ressources (ADP-fossil	365	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
fuels) - <i>MJ/FU</i>				Consu	umption of n	on-renewabl	e resources	. thereby lov	vering their a	availability fo	or future gen	erations.			

					RESOU		E 4-16-4								
	Product stage	Constr proces					Use stage					ery.			
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Use of renewable primary energy excluding renewable primary energy resources used as raw materials - <i>MJ/FU</i>	31.5	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable primary energy used as raw materials <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) <i>MJ/FU</i>	31.5	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials - <i>MJ/FU</i>	396	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable primary energy used as raw materials <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) - <i>MJ/FU</i>	396	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of secondary material kg/FU	1.99	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable secondary fuels- <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable secondary fuels - <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of net fresh water - m ³ /FU	0.103	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

				٧	VASTE C	ATEGOR	IES 4-16-	4							
	Product stage	Consti proces	ruction s stage	Use stage								ery.			
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Hazardous waste disposed kg/FU	8.91E-7	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-hazardous(excluding inert) waste disposed kg/FU	0.958	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Radioactive waste disposed kg/FU	0.0121	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

					OUTPU	T FLOWS	5 4-16-4								
	Product stage	Constr proces	uction s stage	Use stage							End-of-life stage				ery.
Parameters	A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Components for re-use kg/FU	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for recycling kg/FU	0.559	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for energy recovery kg/FU	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Exported energy. detailed by energy carrier <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

CLIMALIT 4-16-44.1

				ENVI	RONMEN	TAL IMP	ACTS 4-1	6-44.1							
	Product stage		ruction s stage				Use stage					End-of-l	ife stage		ery.
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Constant Con	47.1	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
(GWP) - kg CO₂ equiv/FU	The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas. carbon dioxide. which is assigned a value of 1.														
	6.53E-9	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Ozone Depletion (ODP) kg CFC 11 equiv/FU	Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbonsor halons). Which break down when they reach the stratosphere and then catalytically destroy ozone molecules.														
Acidification potential (AP)	0.205	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
kg SO₂ equiv/FU	Acid depositions have negative impacts on natural ecosystems and the man-made environment incl. buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production. heating and transport.														
Eutrophication potential (EP) $kg (PO_4)^3 equiv/FU$	0.0578	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
			Exc	cessive enric	hment of wa	aters and co	ntinental sur	faces with n	utrients. and	the associa	ited adverse	biological e	ffects.		
Photochemical ozone creation (POPC)	0.0143	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
kg Ethene equiv/FU			The reaction	n of nitrogen				<i>.</i>	0	ergy of the s n ozone is ar		a photoche	mical reaction	on.	
Abiotic depletion potential for non-fossil ressources (ADP- elements) - <i>kg Sb equiv/FU</i>	0.000285	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion potential for fossil ressources (ADP-fossil	587	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
fuels) - <i>MJ/FU</i>				Consu	umption of n	on-renewab	e resources	. thereby low	vering their a	availability fo	or future gen	erations.			

					RESOUR	RCE USE	4-16-44.1								
	Product stage	Constr proces					Use stage					ery.			
Parameters	A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Use of renewable primary energy excluding renewable primary energy resources used as raw materials - <i>MJ/FU</i>	52.3	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable primary energy used as raw materials <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) <i>MJ/FU</i>	52.3	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials - <i>MJ/FU</i>	637	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable primary energy used as raw materials <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) - <i>MJ/FU</i>	637	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of secondary material kg/FU	2.99	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable secondary fuels- <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable secondary fuels - <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of net fresh water - m ³ /FU	0.174	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

	WASTE CATEGORIES 4-16-44.1														
	Product stage		ruction s stage	Use stage							End-of-life stage				ery.
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Hazardous waste disposed kg/FU	1.33E-6	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-hazardous(excluding inert) waste disposed kg/FU	1.33	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Radioactive waste disposed kg/FU	0.0198	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

	OUTPUT FLOWS 4-16-44.1														
	Product stage		ruction s stage		Use stage							ery.			
Parameters	A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Components for re-use kg/FU	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for recycling kg/FU	1.64	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for energy recovery kg/FU	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Exported energy. detailed by energy carrier <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

CLIMALIT 4-16-33.1

				ENVI	RONMEN	TAL IMP	ACTS 4-1	6-33.1							
	Product stage		ruction s stage				Use stage					End-of-l	ife stage		ery.
Parameters	A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Constant Con	41.1	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
(GWP) - kg CO ₂ equiv/FU		The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas. carbon dioxide. which is assigned a value of 1.													
	6.41E-9	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Ozone Depletion (ODP) kg CFC 11 equiv/FU		Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbonsor halons). Which break down when they reach the stratosphere and then catalytically destroy ozone molecules.								alons).					
Acidification potential (AP)	0.175	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
kg SO₂ equiv/FU		The mai	n sources fo				acts on natur are agricult							d transport.	
Eutrophication potential (EP) $kg (PO_4)^{3-} equiv/FU$	0.0487	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
			Exc	cessive enric	chment of wa	aters and co	ntinental sur	faces with n	utrients. and	the associa	ated adverse	biological e	ffects.		
Photochemical ozone creation (POPC)	0.0124	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
kg Ethene equiv/FU		Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.													
Abiotic depletion potential for non-fossil ressources (ADP- elements) - <i>kg Sb equiv/FU</i>	0.000241	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion potential for fossil ressources (ADP-fossil	516	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
fuels) - <i>MJ/FU</i>				Const	umption of n	on-renewab	e resources	. thereby lov	vering their a	availability fo	or future gen	erations.			

RESOURCE USE 4-16-33.1															
	Product stage	Constr proces					Use stage					End-of-l	ife stage		ery.
Parameters	A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Use of renewable primary energy excluding renewable primary energy resources used as raw materials - <i>MJ/FU</i>	49.4	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable primary energy used as raw materials <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) <i>MJ/FU</i>	49.4	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials - <i>MJ/FU</i>	564	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable primary energy used as raw materials <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) - <i>MJ/FU</i>	564	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of secondary material kg/FU	2.49	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable secondary fuels- <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renewable secondary fuels - <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of net fresh water - m ³ /FU	0.158	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

	WASTE CATEGORIES 4-16-33.1														
	Product stage		ruction s stage	1	Use stage							End-of-life stage			
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Hazardous waste disposed kg/FU	1.14E-6	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-hazardous(excluding inert) waste disposed kg/FU	1.19	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Radioactive waste disposed kg/FU	0.019	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

	OUTPUT FLOWS 4-16-33.1														
	Product stage		ruction s stage	,	Use stage							ery.			
Parameters	A11A21A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse. recovery. recycling
Components for re-use kg/FU	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for recycling kg/FU	1.5	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for energy recovery kg/FU	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Exported energy. detailed by energy carrier <i>MJ/FU</i>	0	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

LCA results interpretation

In the production of CLIMALIT, the impact due to glass production is more than 80%. Additional impacts are due to the production of additional resources required for the assembly.

For the production of glass, the main impacts are related to the energy consumed in the furnace and on the impacts generated in the production of one of the main raw materials, the soda ash.

		Environmental impacts (A1-A3) CLIMALIT 4-16-4	Unit
(Global warming	29.8	Kg CO₂ equiv/FU
	Non-Renewable resources consumption ^[1]	365	MJ/FU
0	Energy consumption ^[2]	427.5	MJ/FU
Ø	Water consumption ^[3]	0.103	M ³ /FU
	Waste production ^[4]	0.9701	Kg/FU

^[1]: This indicator corresponds to the abiotic depletion potential of fossil resources.
^[2]: This indicator corresponds to the total use of primary energy (renewable and non-renewable)
^[3]: This indicator corresponds to the use of fresh net water.
^[4]: This indicator corresponds to the sum of hazardous, non-hazardous and radioactive waste disposed.

Health characteristics

Concerning the Indoor air quality, clear flat glass is an inert material that doesn't release any inorganic & organic compounds, in particular no VOC (volatile organic compounds).

The sealant is made of organic materials which have been tested regarding their VOC emissions (following ISO 16000 standard):

- Polysulfide: total VOC after 28 days < 38 µg/m3 (Eurofins report G07104)
- Polyurethane: total VOC after 28 days $< 4 \mu g / m3$ (Eurofins report G08363).

If the glass is laminated, a PVB layer is included in the glazing. The VOC emissions test (following ISO 16000 standard) rank the PVB A+ (highest rank) following the French regulation (Eurofins report G10504).

- Total VOC after 28 days < 200 µg/m³
- Formaldéhyde after 28 days < 10 µg/m³

Additional Environmental Information

Saint-Gobain's environmental policy

Saint-Gobain's environmental vision is to ensure the sustainable development of its Activities, while preserving the environment from the impacts of its processes and services throughout their life cycle. The Group thus seeks to ensure the preservation of resources, meet the expectations of its relevant stakeholders, and offer its customers the highest added value with the lowest environmental impact.

The Group has set two long-term objectives: zero environmental accidents and a minimum impact of its activities on the environment. Short and medium-term goals are set to address these two ambitions. They concern five environmental areas identified by the Group: raw materials and waste; energy, atmospheric emissions and climate; water; biodiversity; and environmental accidents and nuisance.

Saint-Gobain's long term objectives:

$\textcircled{\textbf{S}}$	Non recovered waste (2010-2025) : -50% Long-term: zero non-recovered waste
C02	Energy consumption: -15% (2010-2025) CO ₂ emissions: -20% (2010-2025) Emissions of NOx, SO ₂ and dust: -20% for each emissions category (2010-2025)
B	Water discharge: -80% (2010-2025) Long-term: zero industrial water discharge in liquid form
P	2025: promote the preservation of natural areas at Company sites as much as possible
2	2025: all environmental events are recorded, registered and investigated

More information on our website: www.saint-gobain.com and our Registration Document.

Our products' contribution to Sustainable Buildings

Saint-Gobain encourages sustainable construction and develops innovative solutions for new and renovated buildings that are energy efficient, comfortable, healthy and esthetically superior, while at the same time protecting natural resources.

The following information might be of help for green building certification programs:

RECYCLED CONTENT

(Required for LEED v4 Building product disclosure and optimization - sourcing of raw materials)

Recycled content: proportion, by mass, of recycled material in a product or packaging. Only preconsumer and post-consumer materials shall be considered as recycled content.

 Post-consumer material: material generated by households or commercial, industrial and institutional facilities in their role as end-users of the product which can no longer be used for its intended purpose.

In practice, in the case of flat glass, all material coming from glass recycling collection schemes falls under this category, i.e. glass waste from end-of-life vehicles, construction and demolition waste, etc.

• Pre-consumer material: material diverted from the waste stream during a manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.

In the case of flat glass, this waste originates from the processing or re-processing of glass that takes place before the final product reaches the consumer market. Pre-consumer waste flat glass is made of cut-offs, losses during laminating, bending and other processing, including the manufacture of insulating glass units or automotive windscreens.

Cullet generated in the furnace plant and which is reintroduced into the furnace cannot be considered as pre-consumer recycled content, since there was never an intent to discard it and therefore it would never have entered the solid waste stream.

Pre-consumer cullet	~7%
Post-consumer cullet	< 1%

In the future, Saint-Gobain Glass intends to continue the increase of recycled material in its products, especially when recycling building post-consumer cullet glass dismantling and recycling networks will be available in every country.

RESPONSIBLE SOURCING

(Required for BREEAM International new construction 2013 – MAT 03 Responsible sourcing)

All Saint-Gobain Glass Industry sites with a glassmaking furnace, are ISO 14001 certified.

The Saint-Gobain Glass Industry site from the UK (Eggborough) has a BES 6001 certification, with a Very Good score.

All internal Saint-Gobain Glass quarries are certified ISO 14001 like, for example, SAINT-GOBAIN SAMIN (sand) in France. Many Saint-Gobain Glass raw material suppliers are certified ISO 14001. Our policy consists in encouraging the sourcing of raw materials extracted or made in sites certified ISO 14001 (or the equivalent).

For any other question / document / certification, please contact our local sales teams.